000 04427nam a2200313 a 4500
003 AR-sfUTN
008 170717s1995 ||||| |||| 00| 0 eng d
020 _a9780198538646
040 _cAR-sfUTN
041 _aeng
080 _a004.85 B541
_22000
100 1 _aBishop, Christopher M.
245 1 0 _aNeural networks for pattern recognition /
_cChristopher M. Bishop.
260 _aNew York :
_bOxford University Press,
_c1995
300 _a482 p.
336 _2rdacontent
_atexto
_btxt
337 _2rdamedia
_asin mediación
_bn
338 _2rdacarrier
_avolumen
_bnc
505 8 0 _aCONTENIDO 1 Statistical Pattern Recognition 1 1.1 An example - character recognition 1 1.2 Classification and regression 5 1.3 Pre-processing and feature extraction 6 1.4 The curse of dimensionality 7 1.5 Polynomial curve fitting 9 1.6 Model complexity 14 1.7 Multivariate non-linear functions 15 1.8 Bayes' theorem 17 1.9 Decision boundaries 23 1.10 Minimizing risk 27 2 Probability Density Estimation 33 2.1 Parametric methods 34 2.2 Maximum likelihood 39 2.3 Bayesian inference 42 2.4 Sequential parameter estimation 46 2.5 Non-parametric methods 49 2.6 Mixture models 59 3 Single-Layer Networks 77 3.1 Linear discriminant functions 77 3.2 Linear separability 85 3.3 Generalized linear discriminants 88 3.4 Least-squares techniques 89 3.5 The perceptron 98 3.6 Fisher's linear discriminant 105 4 The Multi-layer Perceptron? 116 4.1 Feed-forward network mappings 116 4.2 Threshold units 121 4.3 Sigmoidal units 126 4.4 Weight-space symmetries 133 4.5 Higher-order networks 133 4.6 Projection pursuit regression 135 4.7 Kolmogorov's theorem 137 4.8 Error back-propagation 140 4.9 The Jacobian matrix 148 4.10 The Hessian matrix 150 5 Radial Basis Functions 164 5.1 Exact interpolation 164 5.2 Radial basis function networks 167 5.3 Network training 170 5.4 Regularization theory 171 5.5 Noisy interpolation theory 176 5.6 Relation to kernel regression 177 5.7 Radial basis function networks for classification 179 5.8 Comparison with the multi-layer perceptron 182 5.9 Basis function optimization 183 5.10 Supervised training 190 6 Error Functions 194 6.1 Sum-of-squares error 195 6.2 Minkowski error 208 6.3 Input-dependent variance 211 6.4 Modelling conditional distributions 212 6.5 Estimating posterior probabilities 222 6.6 Sum-of-squares for classification 225 6.7 Cross-entropy for two classes 230 6.8 Multiple independent attributes 236 6.9 Cross-eutropy for multiple classes 237 6.10 Entropy 240 6.11 General conditions for outputs to be probabilities 245 7 Parameter Optimization Algorithms 253 7.1 Error surfaces 254 7.2 Local quadratic approximation 257 7.3 Linear output units 259 7.4 Optimization in practice 260 7.5 Gradient descent 263 7.6 Line search 272 7.7 Conjugate gradients 274 7.8 Scaled conjugate gradients 282 7.9 Newton's method 285 7.10 Quasi-Newton methods 287 7.11 The Levenberg-Marquardt algorithm 290 8 Pre-processing and Feature Extraction 295 8.1 Pre-processing and post-processing 296 8.2 Input normalization and encoding 298 8.3 Missing data 301 8.4 Time series prediction 302 8.5 Feature selection 304 8.6 Principal component analysis 310 8.7 Invariances and prior knowledge 319 9 Learning and Generalization 332 9.1 Bias and variance 333 9.2 Regularization 338 9.3 Training with noise 346 9.4 Soft weight sharing 349 9.5 Growing and pruning algorithms 353 9.6 Committees of networks 364 9.7 Mixtures of experts 369 9.8 Model order selection 371 9.9 Vapnik-Chervonenkis dimension 377 10 Bayesian Techniques 385 10.1 Bayesian learning of network weights 387 10.2 Distribution of network outputs 398 10.3 Application to classification problems 403 10.4 The evidence framework for a and /3 406 10.5 Integration over hyperparameters 415 10.6 Bayesian model comparison 418 10.7 Committees of networks 422 10.8 Practical implementation of Bayesian techniques 424 10.9 Monte Carlo methods 425 10.10 Minimum description length 429 A Symmetric Matrices 440 B Gaussian Integrals 444 C Lagrange Multipliers 448 D Calculus of Variations 451 E Principal Components 454 References 457 Index 477
650 _aREDES NEURONALES
650 _aRECONOCIMIENTO DE FORMAS-INFORMATICA
650 _aINTELIGENCIA ARTIFICIAL
650 _aSISTEMAS DE RECONOCIMIENTO DE PATRONES
650 _aNEURAL NETWORKS
650 _aPATTERN RECOGNITION
942 _cLIB
_2udc
999 _c41462
_d41462