Amazon cover image
Image from Amazon.com

Power system analysis / Hadi Saadat.

By: Material type: TextTextLanguage: English Publication details: Boston: McGraw-Hill, 2002Edition: 2ndDescription: 712 pContent type:
  • texto
Media type:
  • sin mediación
Carrier type:
  • volumen
ISBN:
  • 9780072847963
Subject(s):
Contents:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Incluye CD-ROM, NºI RE0328

CONTENIDO
PREFACE xv
1 THE POWER SYSTEM: AN OVERVIEW 1
1.1 INTRODUCTION 1
1.2 ELECTRIC INDUSTRY STRUCTURE 2
1.3 MODERN POWER SYSTEM 4
1.3.1 GENERATION 4
1.3.2 TRANSMISSION AND SUBTRANSMISSION 6
1.3.3 DISTRIBUTION 6
1.3.4 LOADS 8
1.4 SYSTEM PROTECTION 11
1.5 ENERGY CONTROL CENTER 11
1.6 COMPUTER ANALYSIS 11
2 BASIC PRINCIPLES 14
2.1 INTRODUCTION 14
2.2 POWER IN SINGLE-PHASE AC CIRCUITS 15
2.3 COMPLEX POWER 19
2.4 THE COMPLEX POWER BALANCE 21
2.5 POWER FACTOR CORRECTION 23
2.6 COMPLEX POWER FLOW 26
2.7 BALANCED THREE-PHASE CIRCUITS 30
2.8 Y-CONNECTED LOADS 32
2.9 DELTA-CONNECTED LOADS 34
2.10 DELTA-Y TRANSFORMATION 35
2.11 PER-PHASE ANALYSIS 36
2.12 BALANCED THREE-PHASE POWER 37
3 GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM 48
3.1 INTRODUCTION 48
3.2 SYNCHRONOUS GENERATORS 49
3.2.1 GENERATOR MODEL 49
3.3 STEADY-STATE CHARACTERISTICS CYLINDRICAL ROTOR 56
3.3.1 POWER FACTOR CONTROL 56
3.3.2 POWER ANGLE CHARACTERISTICS 57
3.4 SALIENT-POLE SYNCHRONOUS GENERATORS 62
3.5 POWER TRANSFORMER 64
3.6 EQUIVALENT CIRCUIT OF A TRANSFORMER 64
3.7 DETERMINATION OF EQUIVALENT CIRCUIT PARAMETERS 68
3.8 TRANSFORMER PERFORMANCE 70
3.9 THREE-PHASE TRANSFORMER CONNECTIONS 74
3.9.1 THE PER-PHASE MODEL OF A THREE-PHASE TRANSFORMER 76
3.10 AUTOTRANSFORMERS 77
3.10.1 AUTOTRANSFORMER MODEL 81
3.11 THREE-WINDING TRANSFORMERS 81
3.11.1 THREE-WINDING TRANSFORMER MODEL 82
3.12 VOLTAGE CONTROL OF TRANSFORMERS 83
3.12.1 TAP CHANGING TRANSFORMERS 83
3.12.2 REGULATING TRANSFORMERS OR BOOSTERS 86
3.13 THE PER-UNIT SYSTEM 88
3.14 CHANGE OF BASE 90
4 TRANSMISSION LINE PARAMETERS 102
4.1 INTRODUCTION 102
4.2 OVERHEAD TRANSMISSION LINES 103
4.3 LINE RESISTANCE 105
4.4 INDUCTANCE OF A SINGLE CONDUCTOR 106
4.4.1 INTERNAL INDUCTANCE 107
4.4.2 INDUCTANCE DUE TO EXTERNAL FLUX LINKAGE 108
4.5 INDUCTANCE OF SINGLE-PHASE UNES 109
4.6 FLUX LINKAGE IN TERMS OF SELF- AND MUTUAL INDUCTANCES 110
4.7 INDUCTANCE OF THREE-PHASE TRANSMISSION LINES 112
4.7.1 SYMMETRICAL SPACING 112
4.7.2 ASYMMETRICAL SPACING 113
4.7.3 TRANSPOSE LINE 114
4.8 INDUCTANCE OF COMPOSITE CONDUCTORS 115
4.8.1 GMR OF BUNDLED CONDUCTORS 118
4.9 INDUCTANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 119
4.10 LINE CAPACITANCE 120
4.11 CAPACITANCE OF SINGLE-PHASE LINES 121
4.12 POTENTIAL DIFFERENCE IN A MULTICONDUCTOR CONFIGURATION 123
4.13 CAPACITANCE OF THREE-PHASE LINES 124
4.14 EFFECT OF BUNDLING 126
4.15 CAPACITANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 126
4.16 EFFECT OF EARTH ON THE CAPACITANCE 127
4.17 MAGNETIC FIELD INDUCTION 133
4.18 ELECTROSTATIC INDUCTION 135
4.19 CORONA 135
5 LINE MODEL AND PERFORMANCE 142
5.1 INTRODUCTION 142
5.2 SHORT LINE MODEL 143
5.3 MEDIUM LINE MODEL 147
5.4 LONG LINE MODEL 151
5.5 VOLTAGE AND CURRENT WAVES 156
5.6 SURGE IMPEDANCE LOADING 159
5.7 COMPLEX POWER FLOW THROUGH TRANSMISSION LINES 161
5.8 POWER TRANSMISSION CAPABILITY 163
5.9 LINE COMPENSATION 165
5.9.1 SHUNT REACTORS 165
5.9.2 SHUNT CAPACITOR COMPENSATION 168
5.9.3 SERIES CAPACITOR COMPENSATION 168
5.10 LINE PERFORMANCE PROGRAM 171
6 POWER FLOW ANALYSIS 189
6.1 INTRODUCTION 189
6.2 BUS ADMITTANCE MATRIX 190
6.3 SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS 195
6.3.1 GAUSS-SEIDEL METHOD 195
6.3.2 NEWTON-RAPHSON METHOD 200
6.4 POWER FLOW SOLUTION 208
6.4.1 POWER FLOW EQUATION 208
6.5 GAUSS-SEIDEL POWER FLOW SOLUTION 209
6.6 LINE FLOWS AND LOSSES 212
6.7 TAP CHANGING TRANSFORMERS 220
6.8 POWER FLOW PROGRAMS 222
6.9 DATA PREPARATION 223
6.10 NEWTON-RAPHSON POWER FLOW SOLUTION 232
6.11 FAST DECOUPLED POWER FLOW SOLUTION 240
7 OPTIMAL DISPATCH OF GENERATION 257
7.1 INTRODUCTION 257
7.2 NONLINEAR FUNCTION OPTIMIZATION 258
7.2.1 CONSTRAINED PARAMETER OPTIMIZATION: EQUALITY CONSTRAINTS 260
7.2.2 CONSTRAINT PARAMETER OPTIMIZATION: INEQUALITY CONSTRAINTS 264
7.3 OPERATING COST OF A THERMAL PLANT 267
7.4 ECONOMIC DISPATCH NEGLECTING LOSSES AND NO GENERATOR LIMITS 268
7.5 ECONOMIC DISPATCH NEGLECTING LOSSES AND INCLUDING GENERATOR LIMITS 276
7.6 ECONOMIC DISPATCH INCLUDING LOSSES 279
7.7 DERIVATION OF LOSS FORMULA 289
8 SYNCHRONOUS MACHINE TRANSIENT ANALYSIS 314
8.1 INTRODUCTION 314
8.2 TRANSIENT PHENOMENA 315
8.3 SYNCHRONOUS MACHINE TRANSIENTS 318
8.3.1 INDUCTANCES OF SALIENT-POLE MACHINES 320
8.4 THE PARK TRANSFORMATION 321
8.5 BALANCED THREE-PHASE SHORT CIRCUIT 325
8.6 UNBALANCED SHORT CIRCUITS 330
8.6.1 LINE-TO-LINE SHORT CIRCUIT 330
8.6.2 LINE-TO-GROUND SHORT CIRCUIT 333
8.7 SIMPLIFIED MODELS OF SYNCHRONOUS MACHINES FOR TRANSIENT ANALYSES 335
8.8 DC COMPONENTS OF STATOR CURRENTS 340
8.9 DETERMINATION OF TRANSIENT CONSTANTS 342
8.10 EFFECT OF LOAD CURRENT 347
9 BALANCED FAULT 353
9.1 INTRODUCTION 353
9.2 BALANCED THREE-PHASE FAULT 354
9.3 SHORT-CIRCUIT CAPACITY (SCC) 362
9.4 SYSTEMATIC FAULT ANALYSIS USING BUS IMPEDANCE MATRIX 363
9.5 ALGORITHM FOR FORMATION OF THE BUS IMPEDANCE MATRIX 369
9.6 ZBUILD AND SYMFAULT PROGRAMS 381
10 SYMMETRICAL COMPONENTS AND UNBALANCED FAULT 399
10.1 INTRODUCTION 399
10.2 FUNDAMENTALS OF SYMMETRICAL COMPONENTS 400
10.3 SEQUENCE IMPEDANCES 406
10.3.1 SEQUENCE IMPEDANCES OF Y-CONNECTED LOADS 407
10.3.2 SEQUENCE IMPEDANCES OF TRANSMISSION LINES 409
10.3.3 SEQUENCE IMPEDANCES OF SYNCHRONOUS MACHINE 410
10.3.4 SEQUENCE IMPEDANCES OF TRANSFORMER 411
10.4 SEQUENCE NETWORKS OF A LOADED GENERATOR 418
10.5 SINGLE LINE-TO-GROUND FAULT 421
10.6 LINE-TO-LINE FAULT 423
10.7 DOUBLE LINE-TO-GROUND FAULT 425
10.8 UNBALANCED FAULT ANALYSIS USING BUS IMPEDANCE MATRIX 432
10.8.1 SINGLE LINE-TO-GROUND FAULT USING Zbus 432
10.8.2 LINE-TO-LINE FAULT USING Zbus 433
10.8.3 DOUBLE LINE-TO-GROUND FAULT USING Zbus 434
10.8.4 BUS VOLTAGES AND LINE CURRENTS DURING FAULT 434
10.9 UNBALANCED FAULT PROGRAMS 442
11 STABILITY 460
11.1 INTRODUCTION 460
11.2 SWING EQUATION 461
11.3 SYNCHRONOUS MACHINE MODELS FOR STABILITY STUDIES 464
11.3.1 SYNCHRONOUS MACHINE MODEL INCLUDING SALIENCY 467
11.4 STEADY-STATE STABILITY SMALL DISTURBANCES 471
11.5 TRANSIENT STABILITY EQUAL-AREA CRITERION 486
11.5.1 APPLICATION TO SUDDEN INCREASE IN POWER INPUT 488
11.6 APPLICATION TO THREE-PHASE FAULT 492
11.7 NUMERICAL SOLUTION OF NONLINEAR EQUATION 501
11.8 NUMERICAL SOLUTION OF THE SWING EQUATION 504
11.9 MULTIMACHINE SYSTEMS 511
11.10 MULTIMACHINE TRANSIENT STABILITY 514
12 POWER SYSTEM CONTROL 527
12.1 INTRODUCTION 527
12.2 BASIC GENERATOR CONTROL LOOPS 528
12.3 LOAD FREQUENCY CONTROL 528
12.3.1 GENERATOR MODEL 529
12.3.2 LOAD MODEL 530
12.3.3 PRIME MOVER MODEL 530
12.3.4 GOVERNOR MODEL 531
12.4 AUTOMATIC GENERATION CONTROL 542
12.4.1 AGC IN A SINGLE AREA SYSTEM 542
12.4.2 AGC IN THE MULTIAREA SYSTEM 545
12.4.3 TIE-LINE BIAS CONTROL 549
12.5 AGC WITH OPTIMAL DISPATCH OF GENERATION 554
12.6 REACTIVE POWER AND VOLTAGE CONTROL 555
12.6.1 AMPLIFIER MODEL 555
12.6.2 EXCITER MODEL 556
12.6.3 GENERATOR MODEL 557
12.6.4 SENSOR MODEL 557
12.6.5 EXCITATION SYSTEM STABILIZER - RATE FEEDBACK 562
12.6.6 EXCITATION SYSTEM STABILIZER - PID CONTROLLER 564
12.7 AGC INCLUDING EXCITATION SYSTEM 566
12.8 INTRODUCTORY MODERN CONTROL APPLICATION 567
12.8.1 POLE-PLACEMENT DESIGN 569
12.8.2 OPTIMAL CONTROL DESIGN 576
APPENDIXES
A INTRODUCTION TO MATLAB 586
A.1 INSTALLING THE TEXT TOOLBOX 587
A.2 RUNNING MATLAB 587
A.3 VARIABLES 589
A.4 OUTPUT FORMAT 590
A.5 CHARACTER STRING 592
A.6 VECTOR OPERATIONS 593
A.7 ELEMENTARY MATRIX OPERATIONS 596
A.7.1 UTILITY MATRICES 599
A.7.2 EIGENVALUES 599
A.8 COMPLEX NUMBERS 599
A.9 POLYNOMIAL ROOTS AND CHARACTERISTIC POLYNOMIAL 601
A.9.1 PRODUCT AND DIVISION OF POLYNOMIALS 603
A.9.2 POLYNOMIAL CURVE FITTING 604
A.9.3 POLYNOMIAL EVALUATION 604
A.9.4 PARTIAL-FRACTION EXPANSION 605
A.10 GRAPHICS 606
A.11 GRAPHICS HARD COPY 608
A.12 THREE-DIMENSIONAL PLOTS 615
A.13 HANDLE GRAPHICS 616
A.14 LOOPS AND LOGICAL STATEMENTS 619
A.15 SOLUTION OF DIFFERENTIAL EQUATIONS 626
A.16 NONLINEAR SYSTEMS 629
A.17 SIMULATION DIAGRAM 631
A.18 INTRODUCTION TO SIMULINK 634
A.18.1 SIMULATION PARAMETERS AND SOLVER 635
A.18.2 THE SIMULATION PARAMETERS DIALOG BOX 636
A.18.3 BLOCK DIAGRAM CONSTRUCTION 637
A.18.4 USING THE TO WORKSPACE BLOCK 643
A.18.5 LINEAR STATE-SPACE MODEL FROM SIMULINK DIAGRAM 644
A.18.6 SUBSYSTEMS AND MASKING 646
B REVIEW OF FEEDBACK CONTROL SYSTEMS 648
B.1 THE CONTROL PROBLEM 648
B.2 STABILITY 649
B.2.1 THE ROUTH-HURWITZ STABILITY CRITERION 650
B.2.2 ROOT-LOCUS METHOD 651
B.3 STEADY-STATE ERROR 652
B.4 STEP RESPONSE 654
B.5 ROOT-LOCUS DESIGN 655
B.5.1 GAIN FACTOR COMPENSATION OR P CONTROLLER 656
B.5.2 PHASE-LEAD DESIGN 657
B.5.3 PHASE-LAG DESIGN 658
B.5.4 PID DESIGN 659
B.5.5 PD CONTROLLER 659
B.5.6 PI CONTROLLER 660
B.5.7 PID CONTROLLER 660
B.6 FREQUENCY RESPONSE 667
B.6.1 BODE PLOT 667
B.6.2 POLAR PLOT 668
B.6.3 RELATIVE STABILITY 668
B.6.4 GAIN AND PHASE MARGINS 669
B.6.5 NYQUIST STABILITY CRITERION 670
B.6.6 SIMPLIFIED NYQUIST CRITERION 670
B.6.7 CLOSED-LOOP FREQUENCY RESPONSE 671
B.6.8 FREQUENCY RESPONSE DESIGN 672
B.7 Control System Toolbox LTI Models and LTI Viewer 675
B.7.1 LTI Models 675
B.7.2 The LTI Viewer 675
C POWER SYSTEM TOOLBOX 679
BIBLIOGRAPHY 686
ANSWERS TO PROBLEMS 693

There are no comments on this title.

to post a comment.